1,5-DIARYL-3,3-DISUBSTITUTED-1,5-PENTANEDIONE – A SYNTHON FOR 2,4,6-TRISUBSTITUTED HETEROCYCLES

V. Padmavathi*, A. Balaiah, B. Jagan Mohan Reddy and A. Padmaja
Department of Chemistry, Sri Venkateswara University, Tiruapti-517 502, India

Abstract: 2,4,6-Trisubstituted heterocycles are prepared by the functionalization of *gem*-disubstituents and keto functionalities in 1,5-diaryl-3,3-dimethoxycarbonyl-1,5-pentane-dione (1) and 1,5-diaryl-3-cyano-3-ethoxycarbonyl-1,5-pentanedione (4).

Introduction:

The carbon-carbon bond formation reactions are important in designing desired molecular architecture. Doping of heteroatoms within the carbon framework constitutes the development of heterocycles. In our endeavor to prepare a new class of heterocycles, we have reported the reactivity of phenacyl bromide with active methylene compounds under different conditions¹. During our studies in this area we have prepared 1,5-diaryl-3,3-disubstituted-1,5-pentanedione from the above substrates. The 1,5-diketo and *gem*-diester / cyano ester groups have been utilized to develop a new class of spiro heterocycles.²⁻⁴ In order to explore the synthetic utility of the former further studies have been taken up which is the genesis for present communication. Literature survey indicates that decarboxylation of *gem* - diester produced monocarboxylic acid.⁵ However, direct conversion of diester to mono ester is sparcely reported.⁶ In our continued interest on the study of reactivity of 1,5-diaryl-3,3-disubstituted-1,5-pentanediones, herein we report some of our recent findings in this direction.

Results & Discussion:

When 1,5-diaryl-3,3-dimethoxycarbonyl-1,5-pentanedione (1) is subjected to decarboxylation by heating in acetic acid in the presence of HCl, 1,5-diaryl-3-carboxy-1,5-pentanedione (2) is obtained. On the other hand, treatment of 1 with NaCl in DMSO furnished 1,5-diaryl-3-methoxycarbonyl-1,5-pentanedione (3) directly. Similarly, treatment of 1,5-diaryl-3-cyano-3-ethoxycarbonyl-1,5-pentanedione (4) with NaCl in DMSO gave 1,5-diaryl-3-cyano-1,5-pentanedione (5). The compound 4 on heating in acetic acid in the presence of HCl gave 2. Esterification of 2 in methanol and HCl resulted 3 (Scheme 1 & Table 1).

The presence of a broad absorption band in the region 3350-3400 cm⁻¹ (OH), 1672-1690 (Ar-CO) and 1704-1715 (COOH) in compound 2 and an absorption band around 2245-2278 (CN) in compound 5 indicates the formation of 2 and 5. Furthermore the absence of an absorption band around 1730-1740 (CO₂R) confirms their formation. The ¹H NMR spectra of 2, 3 and 5 displayed one doublet in the region 3.42-3.85 ppm which accounts for methylene protons and one multiplet in the region 4.17- 4.34 ppm for methine protons. However, 3 showed a singlet in the region 3.60-3.62 ppm for methoxy protons (Scheme 1 & Table 2).

The 1,5-diketo functionality present in 3 and 5 is explored to incorporate N, O and S to develop six membered heterocycles. Thus, the reaction of 3 / 5 with ammonium acetate in acetic acid under refluxion resulted 2,6-diaryl-4-methoxycarbonyl-1,4-dihydropyridine (6) / 2,6-diaryl-4-cyano-1,4-dihydropyridine (7). Likewise, the reaction

of 3 / 5 with phosphorus pentoxide in dry benzene gave 2,6-diaryl-4-methoxycarbonyl-4H-pyran (8) / 2,6-diaryl-4-cyano-4H-pyran (9). Similar reaction of 3 / 5 with phosphorus pentasulfide in xylene afforded 2,6-diaryl-4-methoxycarbonyl-4H-thiopyran (10) / 2,6-diaryl-4-cyano-4H-thiopyran (11) (Scheme 2 & Table 1). Displacement of the oxygen atom in 8 / 9 on treatment with excess P_2S_5 in boiling xylene also gave 10 / 11.

The absence of C=O absorption band around 1690 cm⁻¹ in IR spectra of **6-11** indicated their formation. Apart from this **6** and **7** showed a band at 3200-3300 cm⁻¹ for NH group. The ¹H NMR spectra of **6-11** showed two doublets in the region 5.38-6.33 ppm (C₃-H & C₅-H) and 4.12 - 4.64 ppm (C₄-H). Moreover **6**, **8** and **10** displayed a singlet in the region 3.58-3.62 ppm for methoxy protons. The structures of **6-11** were further confirmed by ¹³C NMR spectra (Scheme 2 & Table 2).

Thus the functionalization of *gem*-disubstitutents and keto functionalities in 1 and 4 led to a new class of 2,4,6-trisubstituted heterocycles.

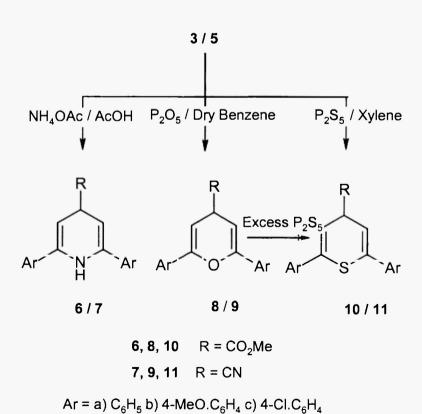
Experimental

Melting points were determined on Mel-Temp apparatus and are uncorrected. Microanalyses were performed at microanalytical laboratory, University of Pune, Pune. The IR spectra were recorded on a Perkin-Elmer 1600 FT-IR spectrometer using KBr disc and wave numbers are given in cm⁻¹ ¹H NMR spectra were run on a Bruker spectrospin 300 MHz spectrometer and ¹³C NMR were recorded on a Varian VXR spectrometer operating at 75.5 MHz in CDCl₃/DMSO-d₆ with TMS as an internal standard and chemical shifts were given in δ. Purity of the compounds was checked by TLC using silica gel 'G' (BDH) and ethyl acetate-hexane as eluents. The 1,5-diaryl-3,3-dimethoxycarbonyl-1,5-pentanedione (1) and 1,5-diaryl-3-cyano-3-ethoxycarbonyl-1,5-pentanedione (4) were prepared as per the literature procedure.

Preparation of 1,5-diaryl-3-carboxy-1,5-pentanedione (2).

The compound 1/4 (0.005 mol) was heated with a mixture of AcOH (25 ml) and conc. HCl (15 ml) for 10-12 hrs. The contents were cooled and poured onto crushed ice. The thick syrupy oil was separated initially which subsequently solidified after keeping aside for a while. It was filtered, dried and recrystallized from aqueous ethanol.

Preparation of 1,5-diaryl-3-methoxy-1,5-pentanedione (3) / Preparation of 1,5-diaryl-3-cyano-1,5-pentanedione (5).


A solution of 1 / 4 (0.3 mol), NaCl (0.1 mol), water (0.6 ml) and DMSO (1 ml) was heated at 130-150 °C for 2.5 hrs. The solution was cooled and poured into water (5 ml). The solid separated was filtered, dried and recrystallized from methanol.

The compound 3 was also prepared by refluxing a mixture of 2 (0.01 mol), absolute methanol (25 ml) and concentrated sulfuric acid (1 ml) for 4-5 hrs. The contents were cooled and poured onto crushed ice. The solid separated was filtered, washed with cold water and dried. The crude product was recrystallized from methanol.

Preparation of 2,6-diaryl-4-methoxycarbonyl-1,4-dihydropyridine (6) or 2,6-diaryl-4-cyano-1,4-dihydropyridine (7).

 $Ar = a) C_6 H_5 b) 4-MeO.C_6 H_4 c) 4-Cl.C_6 H_4$

SCHEME 1

SCHEME 2

Table 1: Physical data for compounds 2, 3 &, 5-11

Compd. No.	Yield* (%)	M.P (°C)	Mol. Formula (Mol. Weight)	Found (Calcd.) %		
				С	Н	N
2a	65 (62)	202-204	C ₁₈ H ₁₆ O ₄ (296.33)	72.85 (72.96)	5.39 (5.44)	
2b	66 (61)	194-196	C ₂₀ H ₂₀ O ₆ (356.38)	67.32 (67.41)	5.72 (5.66)	
2c	63 (64)	217-219	C ₁₈ H ₁₄ Cl ₂ O ₄ (365.22)	59.34 (59.20)	3.91 (3.86)	•
3а	69 (74)	165-167	C ₁₉ H ₁₈ O ₄ (310.35)	73.48 (73.53)	5.78 (5.85)	
3b	66 (79)	173-174	C ₂₁ H ₂₂ O ₆ (370.41)	68.00 (68.10)	6.06 (5.99)	
3c	68 (75)	149-150	C ₁₉ H ₁₆ Cl ₂ O ₄ (379.24)	60.04 (60.18)	4.21 (4.25)	•
5a	67	129-130	C ₁₈ H ₁₅ NO ₂ (277.33)	78.10 (77.96)	5.41 (5.45)	5.17 (5.05)
5b	68	152-154	C ₂₀ H ₁₉ NO ₄ (337.38)	71.32 (71.20)	5.73 (5.68)	4.32 (4.15)
5¢	66	147-149	C ₁₈ H ₁₃ Cl ₂ NO ₂ (346.22)	62.30 (62.45)	3.74 (3.78)	3.95 (4.05)
6 a	74	179-181	C ₁₉ H ₁₇ NO ₂ (291.35)	78.20 (78.33)	5.95 (5.88)	4.93 (4.81)
6 b	73	194-196	C ₂₁ H ₂₁ NO ₄ (351.41)	71.90 (71.78)	6.11 (6.02)	3.92 (3.99)
6с	77	165-167	C ₁₉ H ₁₅ Cl ₂ NO ₂ (360.24)	63.25 (63.35)	4.17 (4.20)	3.96 (3.89)
7a	72	156-157	$C_{18}H_{14}N_2$ (258.33)	83.80 (83.69)	5.40 (5.46)	10.98 (10.84)
7b	68	188-190	$C_{20}H_{18}N_2O_2$ (318.38)	75.57 (75.45)	5.76 (5.70)	8.65 (8.80)
7 c	70	151-152	$C_{18}H_{12}Cl_2N_2$ (327.22)	66.00 (66.07)	3.65 (3.70)	8.50 (8.56)
8a	65	164-166	C ₁₉ H ₁₆ O ₃ (292.34)	78.19 (78.06)	5.45 (5.52)	
8b	69	149-150	C ₂₁ H ₂₀ O ₅ (352.39)	71.66 (71.58)	5.78 (5.72)	<u>.</u>
8¢	71	173-175	C19H ₁₄ Cl ₂ O ₃ (361.23)	63.08 (63.18)	4.00 (3.91)	
9a	65	168-169	C ₁₈ H ₁₃ NO (259.31)	83.50 (83.38)	5.00 (5.05)	5.55 (5.40)
9h	64	176-178	C ₂₀ H ₁₇ NO ₃ (319.36)	75.11 (75.22)	5.44 (5.37)	4.51 (4.39)
9c	68	189-191	C ₁₈ H ₁₁ Cl ₂ NO (328.20)	65.80 (65.87)	3.34 (3.38)	4.20 (4.27)
10a	71 (65)	181-183	C ₁₀ H ₁₆ O ₂ S (308.40)	74.15 (74.00)	5.29 (5.23)	
10Ь	65 (62)	195-197	C ₂₁ H ₂₀ O ₄ S (368.46)	68.50 (68.46)	5.50 (5.47)	
10c	66 (60)	209-211	C ₁₉ H ₁₄ Cl ₂ O ₂ S (377.29)	60.40 (60.49)	3.68 (3.74)	
112	69 (64)	202-204	C ₁₈ H ₁₃ NS (275.38)	78.60 (78.51)	4.71 (4.76)	5.00 (5.09)
Hb	63 (60)	193-195	C ₂₀ H ₁₇ NO ₂ S (335.43)	71.58 (71.62)	5.22 (5.11)	4.28 (4.18)
He	65 (61)	215-217	C ₁₈ H ₁₁ Cl ₂ NS (344.27)	62.96 (62.80)	3.26 (3.22)	4.00 (4.07)

Yields in parentheses indicates: Yield obtained from 4 to 2; from 2 to 3; from 8 to 10 and from 9 to 11

Table 2: NMR data of compounds 2, 3 &, 5-11

Compd. No.	¹H NMR (CDCl₃ / DMSO-d₆) δ, ppm	¹³ C NMR (CDCl ₃ / DMSO-d ₆) &, ppm 31.26 (C ₁), 40.33 (C ₂ & C ₄), 170.88 (COOH), 198.67 (CO-CH ₂)		
2a	3.49 (d. 4H, C ₂ & C ₄ -H), 4.20 (m, 1H, C ₃ -H), 7.31-7.80 (m, 0H, Ar-H).			
2b	3.51 (d, 4H, C ₂ & C ₄ -H), 3.73 (s, 6H, Ar-OCH ₃), 4.17 (m, 1H, C ₃ -H), 7.28-7.80 (m, 8H, Ar-H).	-		
2c	3.42 (d, 4H, C_2 & C_4 -H), 4.24 (m, 1H, C_3 -H), 7.30 - 7.80 (m, 8H, Ar-H).	-		
3a	3.62 (s, 3H, OC <i>H</i> ₃), 3.82 (d, 4H, C ₂ & C ₄ -H), 4.15 (m, 1H, C ₃ -H), 7.28-7.77 (m, 10H, Ar-H).	32.62 (C ₃), 39.87 (C ₂ & C ₄), 53.22 (OCH ₃), 173.30 (COOMe). 196.87 (CO-CH ₂ -)		
3b	3.60 (s, 3H, OCH ₃), 3.73 (s, 6H, Ar-OCH ₃), 3.85 (d, 4H, C ₂ & C ₄ -H), 4.13 (m, 1H, C ₃ -H), 7.24-7.79 (m, 8H, Ar-H).	·		
3с	3.60 (s, 3H, OC H_3), 3.78 (d, 4H, C_2 & C_4 -H), 4.19 (m, 1H, C_3 -H), 7.27-7.77 (m, 8H, Ar-H).			
5a	3.58 (d, 4H, C_2 & C_4 -H), 4.29 (m, H, C_3 -H), 7.30-7.87 (m, 10H, Ar-H).	21.64 (C ₃), 40.33 (C ₂ & C ₄), 120.61(CN), 197. 10 (CO-CH ₂ -)		
5b	3.56 (d, 4H, C ₂ & C ₄ -H), 3.71 (s, 6H, Ar-OCH ₃), 4.34 (m, 1H, C ₃ -H), 7.28-7.85 (m, 8H, Ar-H).	-		
5c	3.59 (d, 4H, C_2 & C_4 -H), 4.32 (m, 1H, C_3 -H), 7.27-7.85 (m, 8H, Ar-H).	-		
62	3.61 (s, 3H, OC H_3), 4.60 (t, 1H, C ₄ -H), 5.41 (d, 2H, C ₃ & C ₅ -H), 7.19-7.76 (m, 10H, Ar-H).	42.11 (C ₄), 52. 78 (OCH ₃), 109.45 (C ₃ & C ₅), 140. 22 (C ₂ & C ₆).		
6b	3.62 (s, 3H, OCH ₃), 3.72 (s, 6H, Ar-OCH ₃), 4.64 (t, 1H, C ₄ -H), 5.38 (d, 2H, C ₃ & C ₅ -H), 7.22-7.80 (m, 8H, Ar-H).	-		
6c	3.59 (s, 3H, OC H_3), 4.61 (t, 1H, C ₄ -H), 5.39 (d, 2H, C ₃ & C ₅ -H), 7.21-7.79 (111, 8H, Ar-H).	-		
7a	4.12 (t, 1H, C ₄ -H), 5.63 (d, 2H, C ₃ & C ₅ -H), 7.22-7.75 (m, 10H, Ar-H).	39.34 (C ₄), 115.01 (CN), 110.24 (C ₃ & C ₅), 142. 05 (C ₂ & C ₆).		
7b	4.17 (t, 2H, C ₄ -H), 3.68 (s, 6H, Ar-OC <i>H</i> ₃), 5.70 (d, 2H, C ₃ & C ₅ -H), 7.22-7.75 (m, 8H, Ar-H).	-		
7c	4.14 (t, 1H, $C_4\text{-H}$), 5.65 (d, 3H, C_3 & $C_5\text{-H}$), 7.23-7.78 (m, 8H, Ar-H).			
8a	3.60 (s, 3H, OC H_3), 4.23 (t, 1H, C ₄ -H), 5.67 (d, 2H, C ₃ & C ₅ -H), 7.25-7.79 (m, 10H, Ar-H).	44.54 (C ₄), 53.23 (OCH ₃), 93.46 (C ₃ & C ₅), 143. 08(C ₂ & C ₆).		
8b	3.58 (s, 3H, OCH ₃), 3.76 (s, 6H, Ar-OCH ₃), 4.19 (t, 1H, C ₄ -H), 5.69 (d, 2H, C ₃ & C ₅ -H), 7.24 7.80 (m, 8H, Ar-H).	-		
8c	3.60 (s, 3H, OC H_3), 4.20 (t, 1H, C ₄ -H), 5.65 (d, 2H, C ₃ & C ₅ -H), 7.23-7.79 (m, 8H, Ar-H).	-		
9a	4.30 (t, 1H, , C_4 -H), 5.69 (d, 2H, C_3 & C_5 -H), 7.24-7.75 (m, 10H, Ar-H).	39.17 (C ₄), 113.68 (CN), 92.37 (C ₃ & C ₅), 142. 87 (C ₂ & C ₆).		
9b	4.22 (t, 1H, C ₄ -H), 3.69 (s, 6H, Ar-OCH ₃), 5.72 (d, 2H, C ₃ & C ₅ -H), 7.23-7.78 (m, 8H, Ar-H).	-		
9c	4.25 (t, 1H, C_4 -H), 5.70 (d, 2H, C_3 & C_5 -H), 7.22-7.76 (m, 8H, Ar-H).	-		
10a	3.59 (s, 3H, OCH ₁), 4.31 (t, 1H, C_4 -H), 6.32 (d, 2H, C_3 & C_5 -H), 7.23-7.77 (m, 10H, Ar-H).	46.68 (C ₄), 52.77 (OCH ₃), 117.20 (C ₃ & C ₅), 143.47(C ₂ & C ₆).		
10b	3.61 (s, 3H, OCH ₃), 3.72 (s, 6H, Ar-OC <i>H</i> ₃), 4.28 (t, 1H, C ₄ -H), 6.33 (d, 2H, C ₃ & C ₅ -H), 7.20-7.79 (m, 8H, Ar-H).	-		
10c	3.58 (S, 3H, OC <i>H</i> ₃), 4.33 (t, 1H, C ₄ -H), 6.28 (d, 2H, C ₃ & C ₅ -H), 7.25-7.78 (m, 8H, Ar-H).	-		
11a	4.43 (t. 1H, C ₄ -H), 6.20 (d, 2H, C ₃ & C ₅ -H), 7.21-7.78 (m, 10H, Ar-H).	36.98 (C ₄), 114.28 (CN), 117.76 (C ₃ & C ₅), 143.47(C ₂ & C ₆).		
116	4.41 (t, 1H, C ₄ -H), 3.72 (s, 6H, Ar-OCH ₃), 6.12 (d, 2H, C ₃ & C ₅ -H), 7.23-7.80 (m, 8H, Ar-H).			
He	4.45 (t, 1H, C ₄ -H), 6.17 (d, 2H, C ₃ & C ₅ -H), 7.20-7.76 (m, 8H, Ar-H).			

A mixture of 3 / 5 (0.01 mol) and ammonium acetate (1.5 g) in acetic acid (10 ml) was refluxed for 2 hrs. The reaction mixture was cooled and poured onto crushed ice. The product obtained was recrystallized from methanol.

Preparation of 2,6-diaryl-4-methoxycarbonyl-4*H*-pyran (8) or 2,6-diaryl-4-cyano-4*H*-pyran (9).

To a solution of 3/5 (0.01 mol) in dry benzene (30 ml), phosphorus pentoxide (2 g) was added and refluxed for 8-10 hrs using Dean-Stark apparatus. The reaction mixture was filtered, washed with water, brine and dried. The solvent was evaporated *in vacuo*. The resultant product was recrystallized from methanol.

Preparation of 2,6-diaryl-4-methoxycarbonyl-4*H*-thiopyran (10) or 2,6-diaryl-4-cyano-4*H*-thiopyran (11).

Compound 3 / 5 (0.01 mol) was dissolved in 25 ml of xylene and phosphorus pentasulfide (0.15 mol) was added. The reaction mixture was refluxed for 10 hrs at 130-140 0 C. The cooled contents were filtered to remove excess phosphorus pentasulfide. The solvent was removed under reduced pressure. The residue was recrystallized from methanol.

10 / 11 was also prepared by heating 8 / 9 (0.005 mol) and phosphorus pentasulfide (0.01 mole) in xylene for 4 hrs. The work up procedure was followed as described above.

Acknowledgement:

We thank Prof. D. Bhaskar Reddy, Emeritus Professor of UGC for his helpful discussion and suggestions. The authors are grateful to CSIR, New Delhi for financial assistance under major research project.

References:

- 1. V. Padmavathi, A. Balaiah, M. Muralidhar Reddy and D. Bhaskar Reddy, *Indian J Chem.*, In press.
- 2. V. Padmavathi, A. Balaiah and D. Bhaskar Reddy, *J Heterocycl Chem.*, **39**, 649 (2002).
- 3. V. Padmavathi, A. Balaiah, K. Venugopal Reddy, A. Padmaja and D. Bhaskar Reddy, *Indian J Chem.*, **41B**, 1670 (2002).
- 4. V. Padmavathi, A. Balaiah, A. Padmaja and D. Bhaskar Reddy, *Phosphorous*, Sulfur & Silicon In press.
- 5. M. Balasubramanian and A. D'Souza, *Tetrahedron*, **24**, 5399 (1968).
- 6. A. P. Krapcho, *Synthesis*, 805 (1982)

Received on July 18, 2003.